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Parametric likelihood inference for record breaking problems

BY BRADLEY P. CARLIN
Division of Biostatistics, School of Public Health, University of Minnesota,

Boz 197 Mayo Memorial Building, Minneapolis, Minnesota 55455-0392, U.S.A.

AND ALAN E. GELFAND

Department of Statistics, University of Connecticut,

But U-120, Storrs, Connecticut 06269-3120, U.S.A.

Summary

In this paper we consider the analysis of record lreaking datasets, where only observations

that exceed (or only those that fall below) the currenA extreme value are recorded. Examples of

application areas leading to data of th's type include ii~dustrial stress testing, meteorological anal-

ysis, sporting and athletic events, and oil and mining si rveys. The inherent missing data structure

present in such problems leads to likelihood functions •hat contain possibly high-dimensional inte-

grals, thus rendering traditional maximum likelihood methods difficult or infeasible. Fortunately,

we may obtain arbitrarily accurate approximations to the likelihood function by iteratively apply-

ing Monte Carlo integration methods (Geyer and Thom ipson, 1992). Subiteration using the Gibbs

sampler may help to evaluate any multivariate integrals encountered during this process. This ap-

proach enables a far more sophisticated set of parametric models than have been applied previously

in record breaking contexts. In particular, we illustrate the methodology for a wide array of discrete

and continuous distributional settings, and for observations that may be corrlated and subject to

mean shifts over time. Related issues in model selection and prediction are also addressed. Finally,

we present two numerecal examples. The first uses a generated dataset exhibiting a high degree of

autocorrelation, while the second involves records in Olympic high jump competition.

Some key words: Gibbs sampler; Missing data; Monte Carlo approximant.
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1 Introduction

The subject of this paper is estimation and prediction in contexts where data points accumulate

equentially over time2, but only those that break the current record (i.e., represent a new maximum

or minimum value) are observed. Data of this type arise in a wide variety of practical situations.

The history of achievement in sporting and athletic events (such as the times required to run one

mile, or top land speeds) is often recorded only in record breaking format. In meteorology, record

high temperatures or water levels are sometimes all that arre available for a given location. In

industrial stress testing, a manufacturer will typically test a series of finished products only up to

the current ot :ved minimum strength, rather than simply increasing the pressure on each item

until it breaks. Data of this type are closely related to what might be called threshold data, where

only observations that exceed (or only those that fall below) a certain level are observed. Examples

of this situation include studies of publication bias, drug effectiveness, and patient monitoring in

which a physician only sees a patient when the latter is (or believes he is) ill enough to justify the

visit.

Datasets of this general class can take many different forms, each requiring its own probability

____ model. Record breaking opportunities may arise in a systematic way (as in an annual auto race) or

completely at random (as in a new record for the number of college students in a. single phone booth).

The former situation seems to call for a discrete time stochastic model; the latter, a continuous

time model (although here we might also group the events into convenient time blocks and treat

the result as a discrete time series). Another distinction involves whether we have information

concerning the failed record breaking attempts or not. In flome discrete time settings, we will have

such auxiliary information (e.g., for an annual race), but not in most continuous time settings.

Given the form of the dataset in hand, we must adopt realistic assumptions concerning the
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nature of the process creating the record breaking attempts. In particular, the assumptions of

independence and a constant mean for the sequence giving rise to the records may or may not

be appropriate. For example, independence may be reasonable for the sequence leading to record

values in destructive stress testing, but not for weekly financial records. When the assumption

of independence is not warranted, we may wish to adopt a Markovian dependence structure, but

in some cases even this will be too restrictive. Concerning the constant mean hypothesis, records

arising from an experienced player's scores in a card game are not likely to shift over time, but

we would expect such a shift in most athletic competitions due to improvements in equipmeat,

nutrition, conditioning, preparation, and heredity (bearing out the old sports adage, "records were

made to be broken").

While there is a large amount of literature on the probability modeling of record breaking

data, relatively little exists on the problem of statistical inference in these contexts. Glick (1978)

contains an excellent review of the probabilistic work and a brief discussion of tests for randomness

in record breaking sequences. Tryfos and Blackmore (1985) discuss the forecasting of future record

values given only past records, but only in the case of an independent and identically distributed

underlying sequence. Samaniego and Whitaker (1986) focus instead on the problem of inference on

"the underlying model given the records, but again consider only the irdependent asd identically

distributed case, dealing primarily with estimating the mean of a single exponential popý.'ation.

In a second paper, Samaniego and Whitaker (1988) adopt the same framework but with only a

nonparametric distributional specification. Smith (1988) retains the independence assumption but

drops that of the constant mean, entert-ining linear, quadratic, and exponential decay models

under normal, Gumbel, and generalized extreme value errors.

In this paper we offer a completely general approach for parametric likelihood inference and

prediction in record breaking contexts. The only requirements for our approach to be applicable are
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the specification of the joint distribution of the entire data sequence and the index set of the record

breaking observations. The general form of the likelihood to be maximized in record breaking

problems is laid out in Section 2. Section 3 introduces our Monte Carlo computational approach,

and discusses its implementation using Markov chain sampling methods. Section 4 outlines several

specific models for record breaking data, in order to give the reader an idea of the generality of the

methodology. Section 5 gives two numerical examples ilustrating our methodology, the first using

an artificial dataset created to exhibit high serial correlation, and the second comprising actual

records in Olympic high jump competition.

2 Record breaking likelihoods

Conceptually, record breaking sequences arise within a chronological sequence of events. For a

sequence of n events we denote the occurence times by {Iti, t2 , ... , t}, and the associated set of

measurements by Y = (YI, Y12,..., In). If the events occur regularly, e.g. daily or annually, we can

replace the t's by the index set {1, 2,..., n}. As noted in Section 1, our formulation presumes that

within this sequence we see only the record breaking Y's, but as a result we also know that no

records occurred at the unseen Y's. Let 1 = 31 < J2 < ... < sr :5n denote the subsc.ipts within

{tl, t2, - - t,} at which records occurred. Thus we assume a total of r records within the sequence

of n event-, whence Y., denotes the record value associated with si. Without loss of generality

we assume that larger values break records, i.e., Y., < Y., < ... < Y1'. Hence our dataset is

{Yi, 2 ,Y. 2 , 3 ,...,s,,Ya,,no records after t.,}.

We now turn to the likelihood associated with this data. In the existing literature possibly

inappropriate simplification with regard to the distribution of the Yi's has been made, e.g. that

they are independent and perhaps identically distributed as well. As suggested in the introduction,
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we suspect that in many cases this may not be so, and hence we only assume that Y has joint

distribution f(y; 0), where 0 is a vector of unknown parameters. Therefore tho required likelihood

can be denoted as L(O; y 1,s 2 ,.. .,s,y,,). Due to the implicit chronology it seems natural to

calculate this likelihood as

.. f(Y; ) Pr(32I;9)f(•O, JIjY, 32; 0)... Pr(S IYlI, 82, s ... , ,._,; O)

xf(Y•,IYI, 2,,..., ,,; 0) pr(no records after t o, IYI, a2 ,.Y., - Yo.; 0)

To obtain expression (1) w! need to compute three types of terms. First consider the term
f(iIYI, 32,. .. ,sj;0). Define the event .4 j= Y _< ai,...,Y,,+-i - yt,} with A.= {YA.+1 -

a,,.., Yn -_ Iy.,}. Then

Pr(Y.,j < CIYI,2,...,a3;9) = Pr(yo1 -' < Y. < C, Al,A2 ,..,A A ,,iI1 ,i,= I,...,j- 1;0)
Pr(Yo• > yoj_,, AliA2,9...,IAjIoi- -yi 1,..., 1; 0)

so that, assuming the derivative exists,

A Yjr( IYI, 32,.... 3j; 0) = f -J° [lu , i = 1, , - - 1; 0) pr.(AlA ,, A2 A0II/( ,..• )

. r (Y aj > J o.- _, , A lsA •, . .. A i- I ly s ,i = 1 ,i ... , y 1- 1 )'

for Y., > Yj•,. Similarly, oince al occurs if and only if both of the events {Y-i > Y-j } aný A.-I

occur, the conditional probability of s, is

SPr(JjIlx, 32P...,• , 0) Y - -; P (Y°,' > yao -11 A,,vA2 s...,sA -_I [#°,,i - 1,...,j 1; 0)
- pr(Y. , > 2, Ai,A 2,...,A ,,= i. .,y- 1;0) )

Lastly,

r-



Assembling these pieces we note that a telescoping of terms arises as we calculate the product in

(1) so0that the likelihood simplifies to

f()YsI;)I i( ,alI,,,i 1,..., pr(AI,...,A 1•y,,i=1,...,;0). (2)

A moment's reflection reveals that (2) is, in fact, obvious and might have been written down

directly. That is, if we let U = (Y,,,..., Y.,), V = Y\U, and we write f(yJ0) = f(u, v;9) =

f(u; 9)f(vIu; 0), then (2) becomes

f(u; 9) pr(V E Blu; ) = f(u, V; )dv, (3)

where the event V E B) {A 1 , A2, .. ,A4 }.

If Y is a Markov sequence, i.e., f(y; 0) :(y: 0) 1ri= 2 f(yjlyj-i; 9) then (2) simplifies to

In Section 4 we discuss, in some detail, several specific models for (2) and (4).

3 Maximization of the likelihood

The problem we face can be viewed as one of missing data. Had we observed the v's we would

have faced a standard problem, namely maximization of f(u, v; 9) with respect to 9. Instead, we

must maximize a likelihood of the form (2). To describe our approach for obtaining the maximum

likelihood estimate of 0, it will be easier to work with the notationally simpler form (3). Given the

joint density f(u, v; 9) and the observations u = u0 wc need to calculate (3) as a function of 9.

Such a function would almost never be available expiicitly since it requires an (n - r)-dimensional
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Sintegration over a constrained region. In general n - r will be large and such integration will defy

exact or approximate calculation unless the Y are independent, in which case we obtain n - r

one-dimensional integrals.

As a result, we are drawn to Monte Carlo approaches for carrying out the integration. In prin-

"ciple, one could attempt a grid search for the maximizing 0, performing a Monte Carle integration

of (3) at each given 0. If the dimension of 0 is at all large such searching will be impractical; even

for low-dimensional 9 the method we now propose will be much faster.

Our objective is to create a Monte Carlo approximant for (3) and subsequently maximize the

resulting approximate likelihood. An additional iterative step insures that the likelihood 'itself

is maximized. We obtain our approximant using ideas in Geyer and Thompson (1992) and the

associated discussion by Gelfaad (1992). Observe that we can write

ff(uo, v; 9)dv =If f(uo,v; Oo)dv 3 If f(uo'v f(vluo; Oo)dv3 If f(vluo;9Oo)dv?
LIA ~fUo, V; Go)j

(5)

Thus if v-, J 1,..., M are drawn from 9(vluo; 9o), the conditional distribution of V given uo

and 0o restricted-to B, a Monte Ca rlo approxim ant for (5) is given by

.f(uo, v;9o),,v x . (Uo,v.;; 0) (6)

Since the integral in this expression is free of 0, an approximate maximum likelihood estimate is

obtained by maximizing the summation in (6) with respect to 0. If f(u; 9) is available explicitly so

that f(vlu; 0) f(u, v; 0)/f(u;O) is as well, the approximant ia (6) can be written equivalently

as

.f(,;) X A= .f(v;luo;Go) (7)
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Expression (7) has computational adv-,tages over (6) under, for example, M ,arkovian assumption,

and is used in the examples in Section 5.

A natural question to ask is how to draw samples from g(vluo; Oo). In spicial cases, such as mul-

tivariate normal models, f(vluo; 0) will be a standard distribution so that g could be sampled by

simple rejection, i.e., ret~iiing v; drawn from f(vluo; Oo) if and only if it belongs to B. Such sam-

pling will generally be very inefficient, howevar. An attractive alternative for general f is Markov

chain Monte Carlo using the Gibbs sampler (see e.g. Gelfand and Smith, 1990). Implementation re-

quires sampling from the complete conditional distributions arising from v, all of which are propor-

tional to the known joint density f(u, v; G0). In particular if we write V = (V', V(_i)) then we need

Ato sample fom .!(viv(_i), Uo; GO) restricted to a half interval. If we employ a Metropolis-within-

Gibbs algorithm (MUller, 1992) these draws can be made from truncated standard distributions.

Such draws may be accompl'shed using a method suggested in Devroye (1986, p. 38).

Geyer and Thompson (1992) observe that there is gain in iterating the approach. More precisely,

starting at some G0 if we meximize (6) to obtain 9, then we can set 01 - 9, redo the maximization

resulting in a new 0, set 02 equal to this new value, and so on. The objective of this iteration is to

insure a good Monte Carlo approximant. In practice a few iterations obtain 01 in the vicinity of the

true 6. At this point, one fina! iteration with M very large will produze an accurate final estimate.

A byproduct of this approach is the possibility of approximating the asymptotic covariance of the

maximum likelihood estimator. Tc do so requires calculation (either analytically or numerically) of

the Hessian matrix from (6) or (7) at b. We do this in conjunction with our examples in Section 5.

We note that theoretical concerns associated with maximum likelihood estimation, regarding,

e.g., existence, uniqueness, consistency, and asymptotic normality, have not been addressed herein.

The assumption is that the likelihood under consideration is reasonir 4 bly well behaved. Remedies

for poorly behaved likelihoods are well discussed in the literature and apply here as well.

8



4 Specific models

4.1 Overview

The Monte Carlo approximant approach of the previous section demonstrates that, under almost

any parametric joint density for Y, maximum likelihood estimation given a record breaking sequence

can, in principle, be carried out. The goal of this section is to explore more specific models that

facilitate calculations and are moltivated by the chronological nature of the record breaking process.

Rather than attempt any formalization we illustrate with three examples. The first two are fairly

general, while the th;rd assumes a Markov Gaussian model.

4.2 Conditionally independent hierarchical models

Suppose that f(y; 6) arizes as f(y; 0) =f f(ylz; 0) f(z; )i)dz, where 9 - (•, qi). We assume

that f(z; il) is a proper density over the domain Z of z so that f(y; 0) is proper, and that given z, the

Yi's are independent. Distributional classcs of this type have been called conditionally independent

hierarchical models (Kass and Steffey, 1989) and offer a rich modeling framework. If we define

h,(z; 0) = E(YiIz;:,) then E(Yi) = E(h,) and cou(.i, Yj) = cou(h,,hi ). Thus appropriate choice

of f(yjz; ,) and f(z; q) can be made to yield depired model behavior.

If f(ylz; i0) and I(z; q/) form a conjugate pair, marginalization over z will readily provide f(y; 0)

and we may proceed as in Sec...n 3. If et.plicit marginalization is not possible, how can we obtain

a Monte Carlo approximant to (3)? We can write

f/(uo=v;O)dv {jf(uov;Oo)dv}

I f(U, vIz; O)f(z; o) ftvluo, z; 0o)fu•Iz; '0o)fz; wo)dzdv

Jf(viu,,z; O.f(uoiz; o)f(z; )dzdvI(8)
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The assumed conditional independence insures that all conditional densities in (8) can be written

down immediately. Sup; VýZý), j = ... ,M} are drawn from the density proportional to

f(vjuo, z; Oo)f(uolz; -o)f(z; o) restricted to B x .. Then an approximant to (8) is given by

f (uo, v;6 0o)dv x ii 1 f1 (9)

which is a minor extension oi equation (6). The required sampling of v and z over B x Z may

be carried out by extending the Gibbs sampler as follows. Given z draw V from f(vfuo, z; ,o)

restricted to B using the complete conditional distributions for Vi, which are free of uG and v(_i)

under conditional independence. Given v draw Z using the complete conditionals for the ZA, which

are proportional to the nonnormalized form f(vluo, z; Oo)f(uolz; to)f(z; 1o). The Zi are treated

as missing data, just like the "Z.

4.3 Moving window sum processes

A natural extension of the case of independent Yi's is to envision them arising as obsertations

from a moving window sum of independent variables. We illustrate for a window of size two.

Suppose that ZoZ,..., Z. are independent with Zi w i(". f ;e). Let Z = Zi + Zi-.. Then the

joint distribution of Y can be straightforwardly written down. Moreover E(Y,) = E(Z,) + E(Zi- 1)

anO. cov(Yi_1,Yi) - ar(Zi-I), so that appropriate choices of the f, will provide deired model

behavior.

As a concrete example, suppose a new species is introduced into an area and thereafter seasonal

population counts are of interest but, in fact, over the course of say n seasons only the record

breaking seasons and counts are recorded. Typically such counts are modeled as Poisson rariates,

but here it might be inappropriate to assume they are independent. Suppose we let Zi be inde-
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pendent Poisson(A,) random variables for i 0, O1.,n and set Y, Z, + Zi-1 . Then clearly

Yi-Poisson(A, + A,.. 1), cov(Yi, Yj.. 1) =A,-1, and E(YIYj- 1 ) =As + Ai-..Yi- 1/(Ai-1 + A,-2 ), linear

in Y,.1 . To create a drift in Ef1',) we could take the Ai to be specified parametric functions. If Ai

is linear in i, we have E(Yj) linear in i; if A, is exponential in i, then log E(Y,) is linear in i.

4.4 Markov Gaussian models

A. Markov~an assumption for a record breaking sequence seems a plausible yet relatively sim-

ple extension from inde~pendence. Recall that under such an assumption the likelihood simpli-

fie$ a bit as in expression (4). In particular suppose that all marginal and conditional densi-

ties from f (y; 6) can be obtained explicitly, as in the case of f(y; 9) multivariate normal. Let

Wi= (Y.i+I,..., Y.'+,...), s = 1,...,r - 1, and Wr =- (Ya.+i,. .. ,Y,,). Then the Wi are con-

ditionally independent given u yielding (4). Since Pr(V E BI uo, 9) can be written as a product

of r terms, an approximant for each term can be created using low-dimensional Gibbs samplers

or some other numerical integration technique, rather than requiring one fully (n - r)-dimensional

sampkir. Expression (7) would be recast aS a product of sums utilizing the conditional distributiouk

f(wi Iuo; e), i= 1.,r.

Suppose, in fact, that events occur at regular intervals and the process is first order Gaussian,

i.e. 1', = p(YZ-i - 14-1) + ei where ej N(O,a 2) and j4 = E(Y,) is a specified parametric

function. As in the previous example the 14 can reflect drift; for instance, j*4 a + fli is used in

the examples of Section 5. Clearly var(Yi) - v2/(1 _ p2) and COtV(y,, y,+,) = 2pi/(l _ p2). Sucha

model extends Smith (1988) and yields routine distribution thtory. Alternatively, Markov Gaussian

models may be created through the inverse covariance matrix. Whittaker (1990, Chapters 5 and

6) presents a very readable discussion of this approach. In particular he shows that if only the

diagonal and first off-diagonal terms in the inverse of the covarianee matrix are nonzero, then the



joint distribution is a Markov Gaussian model.

A generalization in the spirit of Subsection 4.2 assu-nes that the Ai are random. The idea

is that randomly arising larger Ai will encourage the breaking of records. If so then we might

write the model in hierarchical form as f(yJp; p, u2)f('; 77). Note however that we do not have a

conditionally independent hierarchical model. An illustration would be the first order dynamic, or

state-space, model (see e.g. Carlin, Polson and Stoffer, 1992). If we can explicitly marginalize over

p we will find ourselves with a Markov Gaussian model again. If not, we can create an approximant

similar to (9).

A final related point here concerns the extension of such models to a continuous time process

{Y(t) : t > 01, where events occur at times tl,..., t, resulting in Y(t 1),...,Y(t,). Here a standard

theorem in stochastic processes (see e.g. Breiman, 1986, p. 289) notes that a Gaussian stationary

-/ Iprocess is Markov if and only if its autocovariance function r(t) is of the form 671*l, 0 < 7 < 1. In

other words, the only stationary Markov Gaussian process is of the form we have just describad.

5 Numerical examples

5.1 Simulated high correlation data

To illustrate the performance of the methodology for record breaking data exhibiting high

autocorrelation, consider the n = 50 simulated yi values given in 'able 1. These data were generated

according to the linear first order Gaussian model intr.r'ced in Subsection 4.4, where we let a = 0,

1= , a, = 1.4, p = 0.8, and set y, = 1. The yi values are displayed graphically as dots in Figure

1(a); the r = 34 record breaking observations are boxed for easier identification. Fitting a simple

linear regression model to the full 50-point dataset, we see in Figure 1(b) the wave pattern often

present in the residual plot for serially correlated data, and a clear positive trend in the plot of

each residual versus the immediately preceeding residual in Figure 1(c). Brth of these diagnostics
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suggest high.~ positive correlation for our generated dataset.•

s no record y, i no record ?/, i no record y, i no record y,
1 1.00 13 14.81 26 * 27.71 39 41.69
2 1.02 14 19.14 27 * 28.44 40 41.81
3 1.18 15 21.59 28 * 28.41 41 41.85
4 3.07 16 23.63 29 30.06 42 43.63
5 5.32 17 24.49 30 31.08 43 43.73
6 * 3.67 18 25.01 31 33.68 44 47.70
7 * .4.22 19 * 24.85 32 34.58 45 47.92
8 8.55 20 * 23.12 33 * 33.08 46 49.37
9 * 8.50 21 * 24.95 34 * 30.19 47 52.01

10 9.37 22 * 24.83 35 * 31.40 48 53.25
11 10.95 23 25.93 36 * 33.00 49 56.84
12 12.33 24 28.85 37 35.72 50 * 54.92

___________25 * 28.50 38 35.73 __________

Table 1: Simulated data having p = 0.8

The magnitnie of the Pearson correlation present in the lagged refidual plot, 0.83, indicates

the severity of the autocorrelation, but its value is a bit misleading since this statistic does not

actually estimate the parameter p in an AR(1) model with a time trend. Instead, we might look

at the differenced series D, = Yt- Yj-1, t = 2,.. .,50, and observe that iiar(Dt) = 20r21(1 +i p)

and coti(D,,D,_.1) = -[..(l2( - p)]/(1 + p), so that corr(Dt,Dg._.) = -(1 - p)/2. Hence if (•' is

the sample estimate of this correlation, we obtain the crude point estimator •3 = 1 + rain(0, 2C•).

Figure 1(d) plots the (Di, Di-.1) pairs for our dataset; the resulting •5 equals 0.901. Thus we have

substantial evidence that a model incorporating p will substantially improve our inference.

Of course, our models will not analyze the full data as above, but only the 68% of the data that

constitute record breaking observations. Notice that there are three gaps of length four (i = 19-22,

25-28, and 33-36), one gap of length two (i = 6-7), and two gaps of length one (i = 9 and 50).

We will use our Monte Carlo algorithm to find the maximum likelihood estimate of 9 = (a, /, a, p)

given the observed data u0 = (y•,.,'", Y,,) We will compare the fit of this model to that of a
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reduced model where we ignore autocorrela~tion by insisting that p =0.

Using notation suggested i- Subsection 4.4, we write w, (Y6,17)', W2 .= (Y19, 120,Y321,vI22)',

W3 = fY25,Y26vY2r,1f28)', and W4 = (Y339Y341Y3,Y36)' so that v =(y9, yso, w'1,w , w', w')'. Then

the i"'kelihood (4) for our dataset takes the form

L( . ; uo) =f(yi; 0) 1{1r72 f(?/a IYa-j-; e)}J , If f(yi11s, yho; e)dya} fJ!'.' f(YSDIY4g; 9)dyso}

X1 {f!'L f-". f (WiI vs, B; )dwi} {frý f-M., P-# fYJ.'. f (W2 J11 , Y23; O)dW2}

P'.' P'4.J'. f f2 f(W31Y24, Y29; 9)dw.%} If~ P~f:,f: ~4y2 3;944

Since we have assumed a first order iinear Gaussian model, the distribution for each observed record

given ' he one immediately preceding, f(yj lyj-,-; 0), is readily available from standard multivariate

normal theory. Similarly, the required conditional distributions for the gaps 1,O V5s, Wi, W2 , W3 and

w4 are also available as normals, complu.;ing the likelihood specification. Thus a Monte Carlo

approximant of the form in (7) with the Markovian simplifications discussed in Subsection 4.4 is

convenient.

To carry out the required v* sampling, we first note that yjand ysjvalues may be generated

directly from their (suitably truncated) complete conditional distributions, obtained from standard

multivariate normal theory as

f(y9lya, yia; 19) ocN(/Ag, 0,2/(l + p2))I(_.'.)(y9), and
(10)

//where pg a a+ 90+ 2 (I.MLa -9go and A50= a + 506 +p(y4 - a- 49P). For the

missing data lying in gaps of length greater than 1, however, we resort to Markov chain Monte

Carlo methods to obtain the necessary samples. For each such missing yi, the complete conditional
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density to be used for generation of the Y's is of the form

.f(yiy~i-, yi,+;) cN(pju 2 (1 + (

where p = a + (i + -- . (Pi1k - a - fi) , ,- is the most recent record value, and it

is understood that either or both of the conditioning values yi-... and y,+j may themselves be

Monte Carlo samples if they too correspond to non-record values. In our implementation, we ran

M parallel sampling chains for N "burn-in" iteratio,,s to reach the chain's ergodic distribution,

retaining only the Na value from each chain. While somewhat wasteful, this approach was an easy

way to obtain independent iterates in a situation where the required generation was inexpensive.

We took N = 20, a conservative burn-in value based on our experience with normal sampling

models. In less regular modeling scenarios, a monitoring diagnostic may help select the proper

value of N. Under the parallel sampling approach, the recent papers by Gelman and Rubin (1992),

Ritter and Tanner (1992), and Roberts (1992) are particularly helpful in this regard.

Given the sampled values {v - (j , l , wj, wj, w,), j 1,... ,•M}, the Monte Carlo

"approm.mant (7) is easily computed. As mentioned in Section 3, our algorithm uses a small number

of iterations to update this 0o value before the final maximization. Our program was written in

FORTRAN and called the IMSL routine DBCONF, a quasi-Newton algorithm employing a finite

difference gradient, to perform the necessary maximizations.

Using M = 10,000 replications on the third and final iteration of the algorithm we obtained the

full model maximum likelihood estimate • = (-0.008,1.073,1.706,0.786). A numerically computed

Hessian produced the asymptotic standard deviation vector (2.001, 0.068, 0.220, 0.091); the esti-

mated correlations between the elements of • were all negligible with the exception of that between

6 and •, -0.85. Fitting the simple trended AR(1) model to the entire set of n = 50 observations
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results in the point estimate (0.208, 1.068, 1.632, 0.819) and associated standard deviation vector

(2.165, 0.072, 0.168, 0.078). The estimation that uses record data only appears to be degraded very

little, despite the loss of nearly one third of the observations.

Repeating the algorithm using the same number of iterations and replications for the reduced

model (p = 0) gave x = -0 106, / = 1.055, and & = 3.043. Figure 1(a) shows that the trend lines

obtained from the full and reduced models are virtually indistinguishable. Still, the X2 likelihood

ratio statistic equals 36.76 on 1 degree of freedom, and this in turns leads to an Akaike information

criterion of 35.76 and a Bayesian information (Schwarz) criterion of 33.23 - the latter suggesting a

Bayes factor in favor of the full model of over 16 million!

Clearly all of the above model choice criteria confirm that the fullmodel is vastly superior, but

apparently its value lies primarily in its increased precision, indicated by its much smaller & value.

Since this added precision should translate into better predictive ability, we decided to investigate

further using a bootstrap approach. We drew ys/oj,..., y•ao from the fitted full and reduced models

for j = 1,... 2000, being careful to constrain y•0• to be less than g49, as was observed in the original

dataset. Figure 2(a) then plots the 5 1h, 50h and 959A percentiles of the bootstrap distribution over

time. We see that the full model is indeed more precise, though its advantage gradually diminishes.

The full model expects slightly larger future observations on the average due to the recent history

of records at Y,37 through 3y49. The compression of the 951h percentile for y6*0j is -apparently due to

the restriction that it not exceed y,49 - an extra bit of information not usually available in a truly

predictive setting.

Finally, Figure 2(b) gives the histogram of the bootstrap distribution of the waiting time until

the first record after y49 under the full model. Counting the known non-record value at t = 50, the

model suggests substantial probabilities of gaps of length 4 or 5, and a nonnegligible chance of a

gap as long as 10 time points. Again, this behavior is understandable in light of the high estimated
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autocorrelation combined with the long string of records receatly observed to have ended; indeed,

such gaps have occurred in our sample.

5.2 Olympic high jump data

As a second illustration, consider the data displayed in Table 2. These are the record breaking

Olympic high jumps since 1896, as presented in the Wo-Id Almanac and Book of Facts (1989).

Besides being a prototype for many sports history datasets of this type, this dataset is interesting

because it contains two distinct types of missing data. First, no record breaking high jump occurred

"at the Olympics in the years 1904, 1920, 1928, 1932, 1948, 1972, and 1984. Second, no record

occurred in the years 1916, 1940, and 1944 because the Olympics themselves were cancelled due to

the intervening world wars. Our likelihood must reflect this distinction between the failures and

the cancellations.

J si year record (in.) athlete (country)
1 1 1896 71.25 Ellery Clark (US)
2 2 1900 74.80 Irwing Baxter (US)
3 4 1908 75.00 Harry Porter (US)
4 5 1912 76.00 Alma Richards (US)

- 5 8 1924 78.00 Harold Osborn (US)
6 11 1936 80.00 Cornelius Johnson (US)
7 15 1952 80.32 Walter Davis (US)
8 16 1956 83.50 Charles Dumas (US)
9 17 1960 85.00 Robert Shavlakmdze (USSR)
10 18 1964 85.75 Valery Brumel (USSR)
11 19 1968 88.25 Dick Fosbury (US)
12 21 1976 88.50 Jacek Wszoia (Poland)
13 22 1980 92.75 Gerd Wessig (E. Germany)
14 24 1988 93.50 Guennadi Avdeenko (USSR)

Table 2: Olympic High Jump Records, 1896-1988

Since world-class athletes typically compete in more than one year's Olympics, and perhaps

since the athletes of a few countries seem to dominate this event, we might wish to fit a model
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for dependent data. With r = 14 broken records in only 21 Olympic attempts, there is also a

clear need to model an ircreasing mean orer time. Because this is again a discrete time dataset,

we shall attempt to fit the normal linear AR(1) model presented in Subsection 4.4. For simplicity

we let/p = a + ,i = a + #(year - 1892)/4, and investigate the distribution of the waiting time

until the next record. Basak and Bagchi (1990) used Laplace's method to estimate the predictive

distribution of the magnitude of the next record given the 14 records in this dataset, but fit only

a simple model that assumed uncorrelated observati(,ns having a constant mean over time. Their

analysis also ignored the failures and cancellations, and thus discarded the information carried by

the failed attempts. Under this model the cancellations may be ignored, since they cannot be

connected to any observed data and thus do not afifect the likelihood.

Writing w - (y9,yio)' so that v = (YsY2o,iY2 31, ,y74 ,w')', the likelihood is given by

L(O; uo) = f(y; 1) {r;=2 f(v.,I-.,, ; 9)} {fnei, f!,-, fyvIVJ-I. 3+l;9)d~i}

x f(y.lys, ya;)dy7} {ThL f(Y141YI2,YIS;O)dYI 4} f-*.f-*.f(WlYaYu;O)dWI

where F1 = {3, 20,23}. All of the distributions in this expression are available as univariate normals,

except for the bivariate normal distribution of w.

Turning to our sampling-based implementation, we again work with expression (7), which re-

quires simulated yi*, values for the seven observed failures. Except for the back-to-back failures in

1928 and 1932, all of these represent gaps of length 1 and thus may be generated without the use of

Gibbs sampling from complete conditional distributions similar to those displayed in equation (10).

Of course when one of these failures abuts a cancellation (as in 1920 and 1948), there are slight

modifications to the mean and variance to reflect the fact that the adjacent record is more than one

position away, but the associated conditional normal calculations are still routine. For the single

gap of length two, we used the Gibbs sampler with N = 20 to obtain p, and y01 values generated
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from complete conditionals of the form given in equation (11). No modifications are needed in this

case as both ys and y•l are observed records.

Once in possession of the sampled values {v = (y3,oi,y y2*3. y71, Yi4j, w;), j = I,..., M}

we may evaluate the Monte Carlo approximant to the likelihood (7), which is again routine

- j- using multiv"ariate normal theory. Generating M - 10,000 replications at the final iteration,

this dataset required only N = 3 iterations to produce the maximum likelihood estimate 6 =

(70.037,0.894,1.697,0.334), with associated asymptotic standard deviation vector (1.384, 0.084,

0.368, 0.372). Appealing to the asymptotic normality of the maximum likelihood estimator, the

dita strongly suggest an increase of nearly 1 inch in the best Olympic high jump every four years.,

but offer only mild evidence of a positive correlation amongst these quadrennial performances. Re-

"peating the calculations for the reduced model having p = 0, we obtained , = 70.072, i - 0.881,

and ' = 1.869, estimates which show little movement from those in the full model. The single

degree of freedom X likelihood ratio statistic between these two models is 1.91, implying a p-value

of 0.168. The Alaike criterion is 0.91 (a slight preference for the full model) while the Schwarz

criterion is -0.73, for an approximate Bayes factor of 0 694 = 1/1.44 (a slight preference for the

reduced model). Thus the data are inconclusive on the issue of whether to include p in the model

or not.

Figure 3(a) addresses the prediction question, again through a bootstrapping approach. While

the fitted full model has been used in this analysis, the near linearity of all three lines in this pJot

indicates only a small gain in predictive precision over what might be expected from the simple

* =uncorrelated model. Finally, Figure 3(b) shows a nearly linear decline in the probabilities of the

waiting time distribution, with a new record almost certain to have occurred within the next five

"Olympic meets. The 37% predicted chance of a record-breakinit high jump at the 1992 Olympics

seems consistent with the overall observed proportion of records in back-to-back competitions.
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Figure 2. Prediction for Simulated High Correlation Data
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Figure 3. Prediction for Olympic High Jump Data
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Summary

In this paper we consider the analysis of record breaking datasets, where only observations

that exceed (or only those that fall below) the cu.nent extreme value are recorded. Examples of

application areas leading to data of this type include industrial stress testing, meteorological anal-

ysis, sporting and athletic events, and oil and mining surveys. The inherent missing data structure

present in such problems leads to likelihood functions that contain possibly high-dimensional inte.

grals, thus rendering traditional maximum likelihood methods difficult or infeasible. Fortunately,

we may obtain arbitrarily accurate approximations to the likelihood function by iteratively apply-

ing Monte Carlo integration methods (Geyer and Thompson, 1992). Subiteration using Ahe Gibbs

sampler may help to evaluate any multivariate integrals encountered during this process. Thho ap-

proach enables a far more sophisticated set of parametric models than have been applied previously

in record breaking contexts. In particular, we illustrate the methodology for a wide array of discrete

and continuous distributional settings, and for observations that may be correlated and subject to

mean shifts over time. Related issues in model selection and prediction are also addressed. Finally,

we present two numerical examples. The first uses a generated datamet exhibiting a high degree of

autocorrelation, while the second involves records in Olympic high j p competition.
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